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The solution of the plane problem of steady state filtration fromasystern 
of periodically distributed channels in the border zone separating fresh 
waters from Saline waters below, constructed in /l/ with certain con- 
straints imposed on the rate of evaporation from the free surface, is 
continued beyond the restrictions shown by means of appropriate trans- 
formations. The critical mode of flow in the border zone, occurring 
when the rate of evaporation at the border where the saline waters are 
drawn into the flow is increased to prescribed value, is described ana- 
lytically as well as numerically with help of a digital computer, for the 
separate versions. The rate of evaporation is assumed, as in /I_, 2/, to 
be proportional to the abscissa of the points of the free surface. The 
channels are represented by rectilinear segments of length 21. 

We model the process mathematically by a boundary value problem 
of determining the complex potential of the flow o=cp+itp(q is the 
filtration rate potential and $ is the stream function), which is 
an analytic function of the complex coordinate z =z+ iy , within the 
region ~BCL~E (Fi.g.1) corresponding to a half-period of the flow. 
The following condi.tions hold along the segments of the boundary of 
the region z: 

Here L is the half-distance between the middles of adjacent 
channels, and pI and pp are the densities of the fresh and saline 
waters (P1 < PJ. 

Fig.1 

by the inequalities 

In the problem of a 
Stant IWl<p along the 

The depression curve BC and the line of separation ED have to 
be defined. The intensity of evaporation E was restricted in /l/ 

e<P,cr<el;ef=t/(L-i) (2) 
fresh water lens, the first inequality in (2) follows from the con- 
line of separation, imposed by the premise of the immobility of 

saline waters on the magnitude of the filtration rate W= W,i- IWy referred to the coefficient 
of filtration. 1n the caSe of the border zone, a certain excess of E over P can be absorbed 
within the limits of the segment CD (Fig.l), without violating the restriction mentionedabove 
and the scheme of the flow itself. It therefore follows that by virtue of the second inequal- 
ity of (2) which follows from the restriction 1 WZl(l within the contour of the channel AE, 
that the possibility of realizing the inequality E>P is governed by the relation el>P. 

When it holds, we have an alternative. Either increasing the parameter e in the interval 
(p,ei) leads to its reaching the value F= E* exceeding which upsets the equilibrium between 
the saline waters and border zone of fresh waters, or the equilibrium will prevail over the 
whole range of increase in the value of parameter E. 

In order to analyse the situation, we shall transform the solution obtained earlier /I/ 
as it applies to the relation e>p. As a result the basic equation becomes 

.~ 
y =+arth 1' e(P;- P) 

l-+-P 
1c == KS/K, h = %y* (ii., X) y '2 --- sil?(ZIcw, Ir), a = sn (~Ku',,, k) 

Here ftL and 8, are the theta functions /3/, K and K' are complete elliptic integrals of .- 
the first kind with the modulus k and k' D ,/, - k' respectively, and sn is the ellipticJacobi 
function. Fig.2 shows the domain of the parametric variable G-= u+rv. 

- 
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Fig.2 Fig.3 

For the point D(v= ~12) at the line of separation ED(rc=‘/,+iv,Odu~x/2), relation (3) 

yields 

(4) 

From (4), taking into account the properties of the theta function 6,, we conclude that 

(dy/d& = 0. ax # ‘/* + n, n = 0, 1, 2, . . . 

Thus the scheme of flow in the border zone with a horizontal tangent to the line of 

separation at the point D, adopted in /l/ and realized for e<P, remains valid also for the 

values a >P satisfying the inequality ax<'/, and the second relation of (2). 

When CL* = 'I, , Eq.(3) at the line of separation ED will become 

L/dv = 2M sh i n (fi + iv/x)l6r (iv, x)1 

18, (ia, X) )/1 - a* + auk”%* (~Kv, k')I 

and this will yield the relation 
d#/dz = cth nI3 tg (II&) (5) 

Consequently, inthecase in question the steepness oftheline of separation will increase 

monotonically during the motion towards the point D, and the latter will now become a cusp: 

according to (5) we have at this point dyldl= m 

The velocity hodograph will also undergo corresponding transformations. In order to 
determine them, we shall use the following relation for the complex rate of filtration w= 

W, - 'WV = dotda along the line of separation: 

W= --ipchn13V(~),O<u<~i2 

From this we find for the point D that W=O when ax<llP,W=-ip when ax = 'I,. This 

means that when ~>p, the hodograph is not basically changed compared with the case E <P, 
as long as ax < Yz. The difference consists of the fact that now the segment CD is found on 

the continuation of the segment EFD, that is of the cut along the arc of the circle 1 rv= 
ipi2 1 = p?/4. The tip F of this cut emerges on it at the point w=ip when *'r. = 11,. According 

to what was said above, the point D also moves there from the origin of coordinates, and as a 

result a semicircle If- ip/2I<p?/4 is taken out of the hodograph. 

When ax=%',, we have at the given point WV = -(dp/dy)i(p,g) - i = P, i.e. dp’dy = -_p& . Here 

the gradient of decrease in the pressure along the stream becomes equal to the gradient of 

hydrostatic pressure in the zone of saline waters at rest. Setting them into motion would, 
in this situation, require an additional infinitesimal increase in the rate of evaporation. 

The limit case in question reflects the critical mode of the flow in the border zone at the 
brink of upsetting the dynamic equilibrium of filtration of fresh waters, with saline waters 
below the border sane. 

In order to show the premises for realizing such a mode, we shall inspect the relation 

connecting the initial depth H, of the surface of saline waters, and the maximum permissible 

value E* , in the scheme of the border zone, of the parameter E, with the remaining three 

initial parameters L,I and p, fixed for each specific version. 

As was established in /l/, for every value of e E (0, P) there is a corresponding II, = 

Ho0 (L 1, P. e)9 at which the border zone decomposes into a chain of lenses connected to each 

other by the corner points (Fig.1). This value at 11, = II 00 will therefore represent the limit 

value e* of the parameter e. The relation e*(ffO) is an increasing one, and when H, reaches 

a certain value Hno' , the degeneration of the border zone will occur at the maximum value of 

e' = P possible within the scheme of the lens. Such a limit lens and the corresponding 
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initial depth of saline waters are shown in Fig.1 by dotted lines. 
In the case of N,>H,@*, the border zone will also form when E > p. It is precisely 

for such depths that the critical mode of flow mentioned above should appear if the val.ue 
F =: C* inducing it falls within the range (p,~l). 

The mode under discussion was studied numerically, carrying out the calculations for the 
relations obtained from representations (3) at ~?L=V,. As a result we found that when the 
quantities L,i and p are fixed as agreed for every calculated value of the parameter EE 
(0, ar) I then the critical mode appears at a definite value of Ho-; HO*>H,O*. The quantity Ho* 
increases as E increases. The increase in the range of possible variation in the rate of 
evaporation is caused, as in the Case a<P, bytheincreaseinthedepthatwhichthe Salinewaters lie. 

When relation H,* (a) iS of such a character, a quantity g,r *=lirn~,+ representinq the 
E-.el 

upper limit of the values of Ho must exist such that the increase in the value of e will 

lead, in the end, to destablization of saline waters. 

When HO>HO** on the other hand, the latter will remain static under a steady flow of 
fresh water in the border zone at all values of a E (0, El) I within the constraint I WI<1 
on AE. For the given values of the depth Xo, the flow in the border zone is described in 
terms of the functions dridw and doldw, whose expressions when e<p were obtained in /l/. 
When .?>P, the first of these formulas is given by formulas (3). 
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The table gives the results of computing the characteristic dimensions of the border 
zone NI,H, at T, in the critical mode at 1=1, three combinations of the quantities L,P, 
and several values of H, contained within the interval (Ho0 *,Ii,**) of realization of the mode 
(Fig.1). The left end of the interval Ho,,* is recomputed for each version usingthe formulas 
for the lens at e* = 9. As regards the right end, we have already mentioned that at the 
corresponding value of a*= EI the condition (WI<1 will be violated along the segment AE 
and the latter, together with the whole hodograph, will degenerate to the point W= i (Fig. 
3). The table reflects the tendency to such degeneration: when Xo-H~**,e~er, we have a-0 
and hence the segment AE in the w plane (Fig.2) will contract to the point w-0. In this 
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connection, an increase in the value of the parameter e used in the calculations was limited 
to the maximum value of e,* = er -0.0005. The value of H, determined for it can be regarded as 
an approximation to the value ,Ho**. 

Fig.4 shows the lines of separation calculated for the combinations of initial parameters 
used in the table. In the series with the value p=O.Of, the extreme versions are shown by 
dashed lines, and in the case of p= 0.001, by the dot-dash lines. The curve for Ho =35,p = 
0.001 was not drawn, since it is very close to the line of separation at HI= 35,p=O.O1,L= 50. 
This is confirmed by comparing the versions in question with the tabulated values of H, and H,. 
The destabilization of saline waters of reduced density occurs when the rate of evaporation 
is reduced almost proportionally , and hence also the process of filtration within the border 
zone. In conformity with this, the maximum depth T of the free surface of the border zone is 
also reduced. The depression curves formally resemble each other in all the computed versions, 
and their positions within the ranges of the graph also differ little from each other. For 
this reason only one such curve is included in Fig.4 for the lens at L=5O,p=OO1. 

The relationship of a* described above is illustrated in Fig.5 for p=O.O1 by the upper 
line (L= 25) and lower line (L= 50). The dashed horizontal lines show the corresponding limit 
values of the parameter a=~. 

The authors thank N.S. Kolodei for help in carrying out the computations. 
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ISOPERIMETRIC INEQUALITY IN THE PROBLEM OF THE STABILITY OF A 
CIRCULAR RING UNDER NORMAL PRESSURE* 

V.V. KOBEIEV 

Translated by L.K. 

The problem of maximizing the critical load causing a loss of stability 
in an elastic inextensible circular ring under hydrostatic pressure is 
studied. An undeformed ring has the form of a circle of unit radius, and 
its thickness, and hence the flexural rigidity, varies along the arc. 
The thickness distribution must be determined from the condition of maximum 
critical load causing the loss of stability , under the condition that the 
mass of the ring remains constant. It is shown that of all circular rings 
of the same mass a ring of constant thickness can bear the greatest load 
before losing stability. 

1. Basic equations and formulation of the problem of,optimization. Let US 

consider the conditions for the loss of stability of a circular ring acted uponbyauniformly 
distributed, compressive hydrostatic load. We know that under the action of hydrostatic 
pressure the elementary load vectors remain normal to the curved axis of the ring, and the 
work done by this load is equal to the product of the pressure and the difference in the areas 
bounded by the ring in its deformed and undeformed state. Therefore, the external load is 
conservative, and the phenomenon of loss of stability can be studied using static methods. 
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